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This work presents a version of the Metropolis–Hastings algorithm
using quasi-Monte Carlo inputs. We prove that the method yields
consistent estimates in some problems with finite state spaces and
completely uniformly distributed inputs. In some numerical exam-
ples, the proposed method is much more accurate than ordinary
Metropolis–Hastings sampling.

completely uniformly distributed � Gibbs sampler � low discrepancy �
Markov chain Monte Carlo � randomized quasi-Monte Carlo

Monte Carlo simulation methods are widely used in science,
engineering, finance, industry, and statistical inference.

Recent decades have seen many improvements in Monte Carlo
(MC) methods. Much of the progress has been in quasi-MC
(QMC) sampling and in Markov chain MC (MCMC). QMC
methods improve the accuracy of MC, from a root mean square
error of O(n�1/2) using n samples to O(n�1��) for any � � 0, or
even O(n�3/2��) in some settings, for randomized QMC
(RQMC). MCMC greatly extends the range of problems that can
be handled by MC. It is thus of interest to combine QMC and
MCMC. These subjects both have large bodies of literature, but
their published intersection is conspicuously small.

In this work, we prove that some, though not all, QMC
methods can yield consistent estimators in Metropolis–Hastings
MCMC. The QMC constructions that can be made to work are
ones that are ‘‘completely uniformly distributed’’ (CUD) as
described below. Using such a QMC construction is similar to
using the entire period of a (small) random number generator
(RNG). In numerical investigations, QMC can bring a dramatic
improvement over MC in some examples and no improvement
in others. In the numerical examples we tried, our hybrid of QMC
and MCMC always reduced the variance, sometimes by a factor
of �200.

This work is organized into the following sections. Background
gives our notation and some background information on MC,
QMC, and MCMC. A Hybrid of QMC and MCMC describes
CUD sequences and presents our hybrid method, using CUD
points for proposals and acceptance in the Metropolis–Hastings
algorithm. Consistency gives sufficient conditions under which
the hybrid yields consistent estimates. Gibbs Sampler describes
how to fit Gibbs sampling into the framework of this work.
Illustration has some numerical examples. Conclusions states our
findings. We finish this section by describing related prior work.

The absence of a QMC approach for the Metropolis algorithm
was noted in ref. 1 and again in the recent dissertation by
Chaudary (2). Ostland and Yu (3) propose a manually adaptive
QMC as an alternative to the Metropolis algorithm. Liao (4)
published a proposal for using QMC points in MCMC sampling.
He runs a Gibbs sampler using proposals built from a list of n
QMC points assembled in a randomized order. He reports an
empirical variance reduction but notes that there is no mathe-
matical justification for his procedure. Reordering of quasi-
random heat particles (5) between steps has been shown to work
for simulation of kinetic equations, but the structure of that
problem is different from that of Liao. Particle filters using QMC
are discussed in ref. 6. Chaudary (2) uses QMC for the proposal
step of a modified Metropolis algorithm that weights rejected
proposals. The result was improved accuracy for some numerical

examples and essentially unchanged accuracy for others but no
mathematical justification.

Our inspiration for looking at these sequences arises from
recent work viewing the entire period of a RNG as a QMC
rule, a possibility suggested by ref. 7. That technique has been
tried on finite dimensional quadrature problems using con-
gruential generators (8) and shift register (Tausworthe) gen-
erators (9). MCMC requires simulation of a process that
typically uses infinite dimensional inputs. An infinite dimen-
sional ruin process of an insurance company is simulated in ref.
10 using the whole period of a small congruential generator.
They report a variance reduction but provide no mathematical
justification.

Our proposed hybrid uses QMC within one or more simu-
lated Markov chains. It is also possible to use variance
reduction methods, similar to QMC, between two (11) or more
(12) chains, where different chains have antithetically coupled
movements.

Background
We suppose that the reader is already familiar with simple MC,
which we briefly outline here. Then we introduce QMC, RQMC,
and MCMC. For a full exposition, see ref. 13 for MC, ref. 14 for
QMC, ref. 15 for RQMC, and ref. 16 for MCMC.

MC. In simple MC, a quantity � of interest is expressed as � �
E(f(X)) for a real valued function f of a random vector X with
distribution p. Often p is a probability density on �d and then �
is the integral ��d f(x)p(x)dx. In other settings p may be a
probability mass function. In simple MC, one employs indepen-
dent random vectors xi � (xi1, . . . , xid) � p for i � 1, . . . , n and
then estimates � by �̂n � (1�n)�i�1

n f(xi). The justification for
simple MC is the law of large numbers. If E(f(X)2) � 	, then the
root mean square error for MC is O(n�1/2), and asymptotic
confidence intervals are available by the central limit theorem.

The p distributed random vectors xi are usually computed by
transformations of d or more independent uniformly distributed
random variables (17). Typically, one uses imperfect but well-
tested pseudo-random numbers to simulate the underlying uni-
form random numbers.

QMC. The focus in QMC sampling is integration over the unit
cube. QMC is applicable when one can rearrange the problem so
that xi has the U[0, 1]d distribution, perhaps changing the value
of d in the process. Usually d is finite, though some methods of
coping with infinite dimension are given in ref. 18. As with MC,
�̂n takes the form (1�n)�i�1

n f(xi), but now the xi values are
carefully chosen deterministic points in [0, 1]d.

In QMC, the points xi are arranged to be more uniformly
distributed than random points would be. Their degree of
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uniformity typically is quantified as a distance between the
discrete uniform distribution on xi and the continuous uniform
distribution on [0, 1]d. The most prominent such distance is the
star discrepancy, a generalization of the Kolmogorov–Smirnov
distance. To define the star discrepancy, first let �(a) � Vol([0,
a]) � (1�n)�i�1

n 1xi�[0, a] be the local discrepancy function at the
point a � [0, 1]d. Here Vol(S) is the d-dimensional volume of
the (measurable) set S, and [0, a] denotes a d-dimensional box
with 0 and a at opposite corners. The star discrepancy is

D*n � D*n
x1, . . . , xn� � sup
a��0, 1d

��
a� � .

When D*n3 0, then �̂n3 � for Riemann integrable f, providing
a deterministic version of the law of large numbers for QMC.

The significance of star discrepancy arises from the Koksma–
Hlawka inequality

��̂n � �� � D*n
x1 , . . . , xn�� f�HK, [1]

where � f �HK is the d-dimensional total variation of f in the sense
of Hardy and Krause. There are many alternative discrepancies
for xi, and corresponding norms on f, for which a bound like Eq.
1 holds (19).

Widely used QMC points satisfy D*n � O(n�1 log(n)d�1) as
n3 	. Thus, the error in QMC is O(n�1��) for any � � 0. This
rate of convergence is superior to that for MC. The rate is slow
to take hold, but empirical comparisons often find that QMC
outperforms MC for reasonable n and seldom find QMC to be
worse than MC.

To fix ideas, we describe some QMC sequences. Let the
integer n � 0 be written as n � �k�1

	 ankbbk�1 for an integer base
b � 2 and nonnegative integers ankb � b. The radical inverse
function �b(n) � �k�1

	 ankbb�k ‘‘reflects’’ the base b expansion
of n through the decimal point. The van der Corput sequence has
xi � �2(i) � [0, 1]. Halton’s sequence has xi � (�p1(i), . . . ,
�pd

(i)) � [0, 1]d, where the pj are relatively prime. Usually pj is
the jth prime.

Lattice rules (20) are another form of QMC sequence. For a
positive integer N and a vector g � (1, g1, . . . , gd�1) of integers,
the lattice rule has xi � ig�N �  ig�N componentwise for i �
1, . . . , N, where  z is the greatest integer less than or equal to
z. A special case are Korobov rules where gj � aj�1 (modulo N)
for carefully chosen integers a and N with 1 � a � N. The
Korobov points are related to the points of a multiplicative
congruential RNG with ri � ari�1 mod N. Commonly N is a
prime number and a a primitive element modulo N. In this case
the RNG has period 1 if started at r0 � 0 and period N � 1
otherwise. After a reordering, the nonzero Korobov points are
the N � 1 points (ri�N, . . . , ri�d�1�N) for i � 1, . . . , N � 1
and any r0 � 0.

If we run through the RNG once, then we use only (N � 1)�d
of the possible d-tuples from the Korobov points. To use all of
the d-tuples among the Korobov points requires multiple runs
through the RNG, taking care not to repeat Korobov points.

RQMC. The Koksma–Hlawka bound in Eq. 1 is poorly suited to
error estimation. It contains the discrepancy D*n, which can be
hard to compute, and the variation � f�HK that is ordinarily harder
to find than �. Also, although the Inequality 1 holds as an
equality for some worst case f, it can be extremely conservative
for integrands arising in applications.

RQMC methods are a hybrid of QMC and MC. RQMC points
are usually constructed so that, individually, xi has the U[0, 1]d

distribution, whereas collectively the xi have low discrepancy,
with probability one. RQMC allows error estimation through
confidence intervals for � based on independent replications of
the RQMC estimate. A surprising benefit is that some forms of

RQMC reduce the root mean square error to O(n�3/2��) on
suitably smooth integrands, as shown in ref. 21.

A particularly simple form of randomization is Cranley–
Patterson rotation (22). The rotated versions of a1, . . . , an �
[0, 1]d are xi � ai � U �  ai � U for a rotation vector U �
U[0, 1]d common to all n points.

Standard Construction for Markov Chains. For very simple Markov
chains on finite state spaces, one can sample by a standard
construction based on inversion of the cumulative distribution
function. Let Z be a random variable on values 	k for 1 � k �
K � 	. To sample Z by inversion, define Pk � �1�l�k P(Z � 	l),
draw a sample u � U[0, 1], and take Z � 	k where k is the
smallest index with u � Pk.

The standard construction for sampling a Markov chain is as
follows. Begin by sampling x1 by inversion from the stationary
distribution p. Then for i � 1 sample xi�1 by inversion using the
conditional distribution of xi�1 given xi. This standard construc-
tion is used as a mathematical device in our proofs. We do not
assume it can be implemented.

MCMC. MCMC is commonly used in problems where it is difficult
or virtually impossible to sample xi independently from p, by
inversion or any other method. Instead, one samples xi depen-
dently from a Markov chain constructed to have p as a stationary
distribution.

Metropolis–Hastings algorithms for MCMC work in two
stages: proposal and acceptance. Given xi, a value yi�1 is drawn
from a proposal distribution. If that proposal is accepted, then
xi�1 � yi�1, and otherwise xi�1 � xi. Let pi(x 3 y) denote the
probability, or the probability density, of proposing yi�1 � y
when xi � x. When y � x it is moot whether y is accepted or
rejected. For y � x the acceptance probability in Metropolis–
Hastings is always

Ai
x 3 y� � min� 1,
p
y�pi
y 3 x�

p
x�pi
x 3 y�
� . [2]

The term Metropolis–Hastings is used for the generalization by
ref. 23 of the Metropolis algorithm in ref. 24.

Where versions of Metropolis–Hastings differ is in the pro-
posal distribution. In the original Metropolis algorithm, the
proposed increments yi�1 � xi are independent and identically
distributed. In the independence sampler, the proposals yi�1

themselves are independent and identically distributed. Some-
times the standard construction can be viewed as Metropolis–
Hastings with acceptance probability one. For example, it suf-
fices to have a reversibility condition wherein p(y)pi(y 3 x) �
p(x)pi(x 3 y) � 0.

In the Gibbs sampler, the proposal yi�1 changes at most one
of the components of xi. In one version the changing component
j(i) is chosen randomly and in another j(i) repeatedly cycles
through the components of xi in order. In both cases the changing
component is sampled from its conditional stationary distribu-
tion given the values of all the nonchanging components.

A Metropolis–Hastings algorithm is ‘‘homogenous’’ if the
proposal distribution pi(x3 y) does not depend on the step i. In
that case Ai does not depend on i either. All of the proposals
described above are homogenous except for the cyclic Gibbs
sampler.

Once again � � � f(x)p(x) dx is estimated by a sample mean
�̂n � (1�n) �i�1

n f(xi), but now we rely on ergodicity to determine
when �̂n tends to �. Sometimes the first few xi are skipped.
Skipping a finite number of xi does not affect whether �̂n 3 �,
and so we ignore it in this work.
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A Hybrid of QMC and MCMC
Our QMC–MCMC hybrid generates the proposals and the
acceptances in MCMC using QMC points instead of MC points.
There are intuitive arguments for and against this proposal.

First, MCMC sampling has a sequential nature that the usual
QMC sampling methods do not respect. For example, with van
der Corput points vi � [0, 1], it is easy to show that v2k � [0, 1�2)
and v2k�1 � [1�2, 1). Clear and even humorous failures will arise
from using van der Corput points in MCMC. Morokoff and
Caflisch (25) describe an example where a heat particle sup-
posed to undergo a symmetric random walk will instead move
only to the left when sampled by van der Corput points.

The argument in favor of using QMC is that one might expect
a good result from MCMC if one ran the chain through one
complete period of the underlying RNG. Such a strategy essen-
tially would average together many shorter portions of the
generator that might have been presumed to be usable. The
entire period of an RNG typically has much lower discrepancy
than one would see in an independently and identically distrib-
uted sample of the same size. Some, but not all, finite QMC
sequences look like RNGs with a small period. Those that do
approximate CUD sequences as described below.

Definition 1 (CUD): The sequence u1, u2, � � � � [0, 1] is CUD,
if for every integer d � 1, the points zi � (ui, . . . , ui�d�1) �
[0, 1]d satisfy limn3	 D*n(z1, . . . , zn) � 0.

The concept of CUD sequences originated with Korobov (26)
and is used as definition R1 of randomness by Knuth (27). An
up-to-date account of CUD sequences, including some new con-
structions, is in ref. 28. CUD sequences exist in which D*n(z1, . . . ,
zn) � O(n�1��) holds for zi � (ui, . . . , ui�d�1) � [0, 1]d and for all
integers d � 1. Definition 1 applies to an infinite sequence, and
RNGs with finite state spaces must have finite length, or at least a
finite period. Typically, the CUD property applies to a sequence of
RNGs of increasing period. See, for example, theorems 7.3 and 7.4
of ref. 14, which show how certain sequences of linear congruential
generators approximate CUD sequences. The role of CUD se-
quences in simulating processes has been noted previously for
stochastic differential equations (29).

Definition 1 groups the ui into overlapping d-tuples. The
hybrid we propose in Consistency uses nonoverlapping d-tuples.
Chentsov (30) notes the following.

Lemma 1. If the sequence u1, u2, � � � � [0, 1] is CUD and zi �
(udi�l�1, . . . , udi�l�d) for integers d � l � 1, then

lim
n3	

D*n
z1, . . . , zn� � 0.

Our grouping uses l � d. The more general result in Lemma 1
allows one to skip the first d � l values ui.

Independent random points ui � U[0, 1] are CUD in the
sense of strong convergence: Pr(limn3	 D*n � 0) � 1 for any
d, using either blocked or overlapping vectors (see ref. 28). A
definition in the sense of weak convergence suffices for our
purposes.

Definition 2 (Weakly CUD): The random sequence u1, u2, � � � �
[0, 1] is weakly CUD if

lim
n3	

Pr
D*n
z1 , . . . , zn� 
 �� � 0

holds for every integer d � 1 and every � � 0, when zi � (udi�1,
. . . , udi�d).

Consistency
Here we show that one can employ CUD sequences in some
Metropolis–Hastings samplers and obtain consistency. We con-
sider chains with finite state spaces � � {	1, . . . , 	K} and give
conditions under which

p̂n
	� �
1
n �

i�1

n

1xi�	 3 p
	�, as n 3 	 , [3]

for all states 	 � �. In the finite state space setting �̂n 3 �
follows from Eq. 3 for all bounded f. Consistency for CUD
sampling of Markov chains was proved by Chentsov (30),
assuming the standard construction.

Theorem 1 (30). Let xi � {	1, . . . , 	K} for i � 1 be sampled from
the standard construction for Markov chains, using a CUD se-
quence ui. Assume that all K2 transition probabilities are positive.
Then the limit (Eq. 3) holds.

Chentsov’s proof uses a coupling idea that we will extend to
some Metropolis–Hastings samplers. Where the standard con-
struction uses one number to generate the transition, we suppose
that Metropolis–Hastings uses d numbers to generate each
transition where 1 � d � 	. We suppose that the proposal yi�1
can be written as a function �i of xi and d � 1 uniformly
distributed random variables. The proposal functions we have in
mind are from inversion or other transformations, many of which
are described in ref. 17. Then one random variable is used
to make the acceptance rejection decision. Specifically, for i �
0, . . . , n � 1,

yi�1 � �i
xi , udi�1 , . . . , udi�d�1�, and, [4]

xi�1 � �yi�1 , udi�d � Ai
xi 3 yi�1�
xi , else, [5]

for a state xi � � and points uj � [0, 1]. For a homogenous
sampler �i and Ai do not depend on i.

The law of large numbers for MC sampling applies to Leb-
esgue integrable functions, whereas that for QMC requires
Riemann integrable functions. In typical applications, the dis-
tinction need not be drawn. One can, however, make mischief by
using a well-behaved transformation �i when all of (udi�1, . . . ,
udi�d�1) are irrational numbers and setting yi to some arbitrary
value otherwise. To rule out such pathologies, we suppose that
the transitions are regular as described below. Recall that
a Jordan measurable set is one whose indicator function is
Riemann integrable.

Definition 3 (Regular proposals): The proposals are regular if for
all i � 0, k � {1, . . ., K}, and l � {1, . . ., K}, the set Si,k3l �
{(udi�1, . . . , udi�d�1) � yi�1 � 	l if xi � 	k} � [0, 1]d�1 is Jordan
measurable.

By Lebesgue’s theorem (ref. 31, Chapter 8.4) a bounded
function on a bounded set A � �k is Riemann integrable if and
only if that function (when extended to 0 on �k � A) is
continuous except on a set of measure zero. Indicator functions
are of course bounded, as is the domain [0, 1]d�1 in Definition
3. Accordingly, the proposals are regular if and only if the sets
Si,k3l have a boundary with d � 1 dimensional volume zero. We
know of no commonly used proposal functions �i for which
Si,k3l � [0, 1]d�1 has a boundary of positive d � 1-dimensional
volume.

Regularity extends easily from proposal sets to transition sets,
because unions, complements, and tensor products of Jordan
measurable sets are again Jordan measurable. For example, the
set of (udi�1, . . ., udi�d) such that xi � 	k transitions to xi�1 �
	l � 	k is simply Ti,k3l � Si,k3l � [0, Ai(	k 3 	l)]. The set
Tik3k for self-transitions xi � xi�1 � 	k is the complement of
�l�kTi,k3l. A multistep transition through r specific states
corresponds to a subset of [0, 1]rd equal to the Cartesian product
of r transition sets. The set of vectors in [0, 1]rd for which an
r-step transition from xi � 	k to xi�r�1 � 	l takes place is a union
of finitely many multistep transitions sets. When we state below
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that a set is Jordan measurable, it follows from the reasoning
described in this paragraph.

To generalize Chentsov’s Theorem, we will need a ‘‘home’’
state that can be visited from any other and a d-dimensional
hyperrectangular region that guarantees a return to the home
state.

Definition 4 (Home state): A home state 	 � {	1, . . . , 	K} is
one for which there is a box B � �j�1

d [aj, bj] � [0, 1]d of positive
volume such that xi�1 � 	 whenever (udi�1, . . . , ud(i�1)) � B,
regardless of xi.
As an example, consider proposals yi�1 taken from a discrete
approximation to the d-dimensional Gaussian distribution. Per-
haps yi�1 is (��1(udi�1), . . . , ��1(udi�d�1)) rounded to a
discrete set, where � is the standard Gaussian cumulative
distribution function. Then there is a d � 1 dimensional box of
positive volume near (1, . . . , 1) that always gives the ‘‘highest’’
proposal yi�1. When the acceptance probability has a positive
lower bound, then this highest proposal state is a home state.

Theorem 2. Let x0 � � � {	1, . . . , 	K}. Suppose that for i � 0
the proposal yi�1 � � is generated from (udi�1, . . . , udi�d�1) by
a homogenous regular proposal and that xi�1 is given by Eq. 5. If
the sequence (ui)i�1 is CUD and � contains a home state with box
B, then the Limit 3 holds.

Proof: We will couple xi to some idealized chains of finite
length. These chains exist mathematically, but we do not need
to be able to sample from them. For integer m � 1 let x̃i,m �
(x̃i,m,0, . . . , x̃i,m,m) � �m�1 where x̃i,m,0 is sampled from the
stationary distribution p by inversion applied to udi, and for t �
1, . . . , m, the transition from x̃i,m,t�1 to x̃i,m,t is made by the same
function of (udi�1, . . . , ud(i�1)) that the Metropolis–Hastings
rule uses to find the successor of x̃i,m,t�1.

Fix a state 	 � � and let � � 0. Next,

	p
	� �
1
n �

i�1

n

1xi�		 � 	1
n �

i�1

n


1 x̃ i,m,m�	 � 1xi�m�	�	
� 	p
	� �

1
n �

i�1

n

1 x̃ i,m,m�		
� 	1

n �
i�1

n


1xi�m�	 � 1xi�	�	. [6]

The point xi�m can only differ from the coupled point x̃i,m,m
if the box B leading to the home state is avoided by m consecutive
transitions. There is thus a dm-dimensional hyperrectangle T1 of
volume (1 � Vol(B))m such that x̃i,m,m � xi�m when (udi�1, . . . ,
udi�dm) � T1. We choose m large enough that (1 � Vol(B))m �
�. Because ui is CUD, the limit as n 3 	 of the first term in the
bound Eq. 6 is no larger than �.

For the second term in Eq. 6, notice that x̃i,m,m � 	 if and only
if (udi�1, . . . , udi�dm) lies in a dm-dimensional region T2. The
region T2 has volume p(	) because the construction of x̃i,m,m
would generate x̃i,m,m � p had (udi�1, . . . , udi�dm) been sampled
U[0, 1]dm. For regular proposals, the indicator function of T2 is
Riemann integrable. Because ui are CUD, it follows that �p(	) �
1�n �i�1

n 1x̃i,m,m�	� 3 0 as n 3 	.
The third term in Eq. 6 is no larger than m�n 3 0. There-

fore the limit, as n 3 	, of the bound in Eq. 6 is no larger
than �. �

Chentsov’s Theorem 1 requires that every transition probabil-
ity is positive, whereas our Theorem 2 requires a home state.
Chentsov’s Theorem 2 requires neither assumption but requires
sampling by the standard construction. His Theorem 2 contains

his Theorem 1, but they use different techniques, and he remarks
that the first one might extend more easily to continuous state
spaces. Our Theorem 3 below extends his Theorem 2 from chains
sampled by the standard construction to chains sampled by
Metropolis–Hastings. We also cover weakly CUD points. If a
regular and homogenous Metropolis–Hastings sampler is con-
sistent for independently and identically distributed ui, then it is
also consistent for ui that are CUD or weakly CUD:

Theorem 3. Let x0 � � � {	1, . . . , 	K}. Suppose that for i � 0
the proposal yi�1 � � is generated (udi�1, . . . , udi�d�1) by a
homogenous regular proposal and that xi�1 is given by Eq. 5.
Assume that

lim
n3	

Pr
 � p̂n
	k� � p
	k� � 
 � �x0 � 	 l� � 0, [7]

holds for all 	k, 	l � � and all � � 0 when ui are independent
U[0, 1] random variables. If ui are replaced by CUD ui, then the
consistency result 3 holds. If ui are replaced by weakly CUD ui, then
Eq. 7 still holds.

Proof: First, we assume that ui are CUD and then define some
sets of consecutive ui for which poor convergence is seen. Given
x0 the value p̂n(	k) is a function of u1, . . . , und, though we
suppress this dependence to avoid unwieldy notation. With this
understanding, pick � � 0 and let

Tlkn
��

� �
u1 , . . . , und� � �0, 1nd � � p̂n
	k� � p
	k�� 
 �,

x0 � 	l,�.

From Eq. 7 there is a value m such that Vol(Tlkm(�)) � ��K
for all l, k � {1, . . . , K}. Let Tkm(�) � �l�1

K Tlkm(�). Because
the proposals are regular, the set Tkm(�) is Jordan measurable.
Also Vol(Tkm(�)) � �.

For i � 1, . . . , n let Zi � {0, 1} with Zi � 1 if and only if
(ud(i�1)�1, . . . , ud(i�m�1)) � Tkm(�). Define p̂i,m(	k) � (1�m)
�t�0

m�1 1xi�t�	k
. Notice that �p̂i,m(	k) � p(	k)� � � holds whenever

Zi � 0, and regardless of xi�1.
Next we write

p̂n
	k� �
1
n �

i�1

n

p̂i,m
	k� �
1
n �

t�1

m�1 t
m

�1xm�t�	k
� 1xn�m�t�	k

. [8]

We note that there is a minor error in Chentsov’s version of this
identity, his equation 19 (30). The second term in Eq. 8 is smaller
than m�n. Then,

�p̂n
	k� � p
	k�� �
1
n �

i�1

n

Zi�p̂i,m
	k� � p
	k��

�
1
n �

i�1

n


1 � Zi��p̂i,m
	k� � p
	k�� �
m
n

�
1
n �

i�1

n

Zi � � �
m
n

3 Vol
Tkm
��� � � � 2� ,

as n 3 	, establishing our result for CUD ui.
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If ui are weakly CUD then as before �p̂n(	k) � p(	k)� � (1�n)
�i�1

n Zi � � � m�n. Now taking d � m in the definition of weakly
CUD sequences yields for n � m�� that

Pr
 � p̂n
	k� � p
	k� � 
 4�� � Pr� 1
n �

i�1

n

Zi 
 2�� 3 0. �

Chentsov (30) proves a converse for the standard construc-
tion. For the sequence ui to be suitable for every Markov chain
under the standard construction, it must be CUD. For each
non-CUD sequence (30) constructs a chain for which that
sequence applied to the standard construction fails to be con-
sistent. A converse holds for Theorem 3, too. A sequence ui that
is not CUD must fail to properly cover some rectangle R in some
dimension d. We can then construct a chain on {	1, 	2} that
samples independently visiting state 	2 at step i if and only if
(u(i�1)d�1, . . . , udi) � R. So the sequence fails to provide
consistent estimates for this constructed chain.

Gibbs Sampler
The Gibbs sampler is slightly different from the other samplers.
Minor changes are required to handle it. We outline the details
in this section.

In MCMC, we use d for the number of variables uj needed to
generate a transition. Let D be the (finite) number of compo-
nents of xi. This D may differ from d. The random scan version
of the Gibbs sampler takes the changing components j(i) inde-
pendent and uniformly distributed on {1, . . . , D}. Accordingly,
only one random variable is needed to choose j(i). To fit our
framework the same number m of random numbers must be
required to make the proposal yi�1 regardless of j(i). When
inversion is used, then m � 1. Counting the acceptance variable,
d � m � 2 for random scan Gibbs. If updating the jth component
takes mj � 	 random variables, then one can take m � max1�j�D
mj and simply ignore m � mj(i) of the ul values at step i.

Because all proposals are accepted in Gibbs sampling, the
values udi for i � 1 are not even used by the method. Instead of
ignoring every dth variable, it is more natural to use the whole
sequence in blocks of d � 1 values, with u(d�1)i�1, . . . ,
u(d�1)(i�1) generating yi�1 � xi�1. Let ũi be a sequence made by
taking consecutive blocks of d � 1 ui values and inserting some
value vk � [0, 1] between the kth and k � 1-st block. The value
vk provides the (ignored) variable that determines acceptance of
yk. If there exists a sequence vk for which ũi is CUD, then
Theorem 3 applies to the Gibbs sampler. In fact, independent
random vk � U[0, 1] yield a weakly CUD sequence ũi, and so Eq.
7 holds for Gibbs sampling driven by ũi. But p̂n is not random
because it ignores the vk, and so Eq. 7 implies that the consis-
tency Eq. 3 also holds for random scan Gibbs sampling.

Deterministic scan Gibbs sampling does not have homogenous
proposals. There are D different proposal distributions. Com-
monly the component j(i) with a proposed change in yi�1 satisfies
j(i) � 1 � i mod D. Rather than considering a general
nonhomogenous sampler, one instead can split the chain xi into
D subchains of the form xl�Di for i � 1 and 1 � l � D. Each such
chain is homogenous, and if each of them is consistent, then so
is the original chain.

Illustration
Our consistency results show that as n 3 	, the QMC–MCMC
estimate �̂n will converge to �. They do not indicate whether
QMC–MCMC is better than MCMC, either asymptotically as n3
	 or in finite sample sizes. The asymptotic superiority of QMC over
MC is well established for finite dimensional problems with sample
size approaching infinity. To study the effect of finite sample sizes,
infinite dimensions, and the use of continuous instead of discrete
state spaces, we try some small numerical examples.

Our first example has for p the N(0, 1) distribution, and we
study estimates of � � E(x), known to be zero. We consider the
independence sampler with proposals yi � N(0, 2.42), for which
the acceptance rate is �50%. We also consider a random walk
sampler, yi � N(xi�1, 2.42). For each proposal type, the MC
version used pseudo-random numbers to propose and accept�
reject (by means of Eq. 2) for 65,521 steps. The QMC version
used all 65,521 points from the LCG with N � 65,521 and a �
17,364 given in ref. 8. They were arranged in order (0, 0), (u1,
u2), (u3, u4), . . . , (u65519, u65520), (u2, u3), (u4, u5), . . . , (u65520,
u1). We applied Cranley–Patterson rotation to these N pairs.
The first element in each pair generates the proposal, and the
second generates the accept�reject decision.

Each algorithm was repeated 300 times. The mean and mean
squared error taken over the 300 answers are displayed in
Table 1. In each case the mean is close to the true answer, zero.
The square mean is small compared with the mean squared
error (MSE) so that bias is a negligible part of the MSE. QMC
achieves a MSE reduction factor of 2.65 for the random walk
example and 10.3 for the independence sampler.

Our second example has been used by refs. 4 and 32. It features
10 pumps, of which pump j has failed sj times in tj � 1,000 h. The
statistical model is Poisson with Pr(nj � m) � e� j tj (jtj)m�m!. The
unknown failure rates j � 0 have a Gamma density proportional
to j

�e�� j where � � 1.802 is known and � � 0 has prior density
proportional to ���1e��� where � � 0.1 and � � 1. A table with sj
and tj appears in ref. 32 along with the formula they used to choose
�. The state vector x � (�, 1, . . . , 10) has 11 dimensions.

We used a Gibbs sampler with deterministic cycles. The
starting point used the maximum likelihood estimates sj�tj for
j together with the full conditional mean of �, given the
starting j values. The Gibbs sampling was driven by inversion
of Gamma CDFs applied to RQMC points, as described in ref.
32. The RQMC points were an 11-dimensional Cranley–
Patterson rotation applied to QMC points. The QMC points
using N � 1021 and a � 65 from ref. 8 start as (0, . . . , 0), (u1,
. . . , u11), . . . , (u1013, . . . , u1020, u1, u2, u3), the next run through
the RNG starts with (u4, . . . , u14), and so on, until all 1,021

Table 2. Comparison of QMC and MC for pump example

Pump MC QMC Ratio

1 6.71 � 10�7 3.99 � 10�9 168.0
2 7.66 � 10�6 5.61 � 10�8 136.5
3 1.52 � 10�6 8.92 � 10�9 170.1
4 9.79 � 10�7 4.65 � 10�9 210.5
5 9.40 � 10�5 7.25 � 10�7 129.8
6 1.49 � 10�5 1.09 � 10�7 136.1
7 3.31 � 10�4 8.71 � 10�6 38.0
8 3.12 � 10�4 2.25 � 10�5 13.9
9 3.93 � 10�4 3.96 � 10�6 99.3
10 1.84 � 10�4 1.03 � 10�6 178.9
� 8.68 � 10�4 1.07 � 10�5 80.8

Shown are MC and QMC variances and their ratio for the parameters of the
pump data model described in the text.

Table 1. Comparison of QMC and MC for independence sampling
and random walk sampling on a small numerical example

Independence Random walk

Mean MSE Mean MSE

MC �3.58 � 10�4 3.44 � 10�5 �7.90 � 10�4 6.67 � 10�5

QMC �7.50 � 10�6 3.32 � 10�6 4.10 � 10�4 2.52 � 10�5

QMC reduces the MSE by 10.3 for the independence sampler and by 2.65 for
the random walk.

8848 � www.pnas.org�cgi�doi�10.1073�pnas.0409596102 Owen and Tribble

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
29

, 2
02

1 



www.manaraa.com

vectors have been used once. Each algorithm was repeated 300
times. Table 2 shows variance reductions between �14 and
�210 for QMC–MCMC.

Conclusions
In this work, we have shown that QMC points can be used in
Metropolis–Hastings sampling without inconsistency. The points
must be CUD. In our numerical examples, the QMC–MCMC
hybrid consistently had smaller variance than MCMC, some-
times by a small amount, sometimes by a factor of hundreds. The
largest of these gains are better than those reported in related
empirical work (2, 4, 6). A rough assessment of our estimated
variance reductions can be obtained from the F300,300 distribu-
tion. With 300 replicates, estimated variance reduction factors
are within a multiplication factor of 1.25 of the true factors

�95% of the time. In quadrature problems, the largest QMC
gains have been found for integrals of lower effective dimen-
sionality (33). It remains to see where MCMC problems might
have similar structure. We saw larger gains in the higher-
dimensional Gibbs sampling problem than in the low-
dimensional problem, possibly because the lower-dimensional
problem involved a discontinuity at the acceptance threshold.
We conclude by noting that the extra work in implementing
MCMC with QMC is very small. One replaces the RNG by
another RNG that has a smaller period and then uses the entire
period one or more times.
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